TRANSLATIONAL PHYSIOLOGY Improvement in cardiac function after bone marrow cell thearpy is associated with an increase in myocardial inflammation

نویسندگان

  • Jie Sun
  • Shu-Hong Li
  • Shi-Ming Liu
  • Jun Wu
  • Richard D. Weisel
  • Yu-Feng Zhuo
  • Terrence M. Yau
  • Ren-Ke Li
  • Shafie S. Fazel
چکیده

Sun J, Li S, Liu S, Wu J, Weisel RD, Zhuo Y, Yau TM, Li R, Fazel SS. Improvement in cardiac function after bone marrow cell thearpy is associated with an increase in myocardial inflammation. Am J Physiol Heart Circ Physiol 296: H43–H50, 2009; doi:10.1152/ajpheart.00613.2008.—The mechanisms for the beneficial impact of bone marrow cell (BMC) therapy after myocardial infarction (MI) are ill defined. We hypothesized that the implanted cells improve function by attenuating post-MI inflammation and repair. In mice, 3 10 fresh BMCs were implanted immediately after coronary ligation. Cardiac function was evaluated over time. Inflammatory cytokines and cells were measured, and their impacts on the (myo)fibroblastic repair response, angiogenesis, and scar formation were determined. All differences below had P values of 0.05. BMC implantation reduced the decline in fractional shortening and ventricular dilation. Invasive hemodynamics confirmed a difference in systolic function at day 7 and diastolic function at day 28 favoring the BMC group. Interestingly, BMC implantation caused a 1.6-fold increase in the number of macrophages infiltrating the infarct but did not affect neutrophils. This increase was associated with a 1.9-fold higher myocardial TNFlevel. The heightened inflammatory response was associated with a 1.4-fold induction of transforming growth factorand a 1.3-fold induction of basic fibroblast growth factor. These changes resulted in a 1.6-fold increase in -smooth muscle actin and a 1.9-fold increase in total discoidin domain receptor 2-expressing cells in the BMC group. These two markers are expressed by cardiac (myo)fibroblasts. Capillary density in the border zone increased 2.0fold. Consistent with a more robust repair-mediated scar “contracture,” the final scar size was 0.7-fold smaller in the BMC group. In conclusion, after MI, BMC therapy induced a more robust inflammatory response that improved the “priming” of the (myo)fibroblast repair phase. Enhancing this response may further improve the beneficial impact of cellular therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement in cardiac function after bone marrow cell thearpy is associated with an increase in myocardial inflammation.

The mechanisms for the beneficial impact of bone marrow cell (BMC) therapy after myocardial infarction (MI) are ill defined. We hypothesized that the implanted cells improve function by attenuating post-MI inflammation and repair. In mice, 3 x 10(5) fresh BMCs were implanted immediately after coronary ligation. Cardiac function was evaluated over time. Inflammatory cytokines and cells were meas...

متن کامل

Effects of mesenchymal stem cells with injectable scaffold on cardiac function in myocardial infarction in Rabbit

BACKGROUND: Bone marrow-derived mesenchymal cellscan transdifferentiate into Cardiomyocyte cells and improveheart function after transplantation. Since biomaterials canimprove the cell retention in the site, cell survival and differentiation,heart tissue engineering is now being explored as anapplied solution to support cell-based therapies and increasetheir efficacy for myocardial diseases. Ch...

متن کامل

Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse

Objective(s):Bone marrow-derived mesenchymal stem cells (BMSCs) have attracted significant interest to treat asthma and its complication. In this study, the effects of BMSCs on lung pathology and inflammation in an ovalbumin-induced asthma model in mouse were examined. Materials and Methods:BALB/c mice were divided into three groups: control group (animals were not sensitized), asthma group (an...

متن کامل

Effect of high- intensity interval training on tissue changes of collagen type 1 and fibrosis percent in male rats with myocardial infarction

Introduction: Myocardial infarction (MI) is defined pathologically as cardiac muscle cell death due to abnormal blood flow, prolonged coronary artery ischemia, and replacement of cardiac tissue necrosis as a dense fibrotic lesion. Expression of collagen-1 protein levels and fibrosis increase after myocardial infarction in cardiac tissue. The aim of present study was to investigate the effect of...

متن کامل

Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration.

The primary cardiac response to ischemic insult is cardiomyocyte hypertrophy, which initiates a genetic program culminating in apoptotic myocyte loss, progressive collagen replacement, and heart failure, a process termed cardiac remodeling. Although a few cardiomyocytes at the peri-infarct region can proliferate and regenerate after injury, no approaches are known to effectively induce endogeno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008